Меню Закрыть

Система управления Микас 11ET.

Система управления Микас 11ET для автомобилей ГАЗ экологического класса 3,4.

Чем обусловлена необходимость разработки и применения новой системы управления?

Согласно постановлению Правительства Российской Федерации от 12 октября 2005 г. № 609 установлены пять экологических классов транспортных средств и сроки их введения на территории Российской Федерации. Каждый экологический класс соответствует нормам, принятым в Европе:

 

Система управления Микас 11ET

Рис.1 Сроки введения норм на токсичность отработавших газов в Европе и России.

С января 2008 г в России введены требования к автомобильным выбросам уровня Евро-3, отличающиеся от предыдущих значительно жёсткими требованиями как к собственно вредным автомобильным выбросам, так и требованиями бортового контроля всех систем автомобиля, от которых эти выбросы зависят. Кроме того, требования низких выбросов токсичных веществ должны выполняться автомобилем на протяжении не ниже 80 тыс. км пробега. Именно это обстоятельства и, с учётом надвигающихся в 2010 году требований Евро-4, способствовали разработке двигателя ЗМЗ-40524 с системой управления Микас 11ЕТ, автомобилей ГАЗель и Соболь, которые в настоящее время сходят с конвейера Горьковского автозавода.

В чём особенность технических решений, применяемых в конструкции двигателя и системы управления?

Общая схема системы управления Микас 11ЕТ для автомобилей ГАЗ с двигателями ЗМЗ40524 представлена на рис. 2.

Система управления Микас 11ET

Рис. 2 Общая схема системы управления Микас 11ET.

Основная особенность конструкции двигателя и системы управления состоит в том, что помимо индивидуальных катушек зажигания с наконечниками, которые расположены на свечах зажигания, впервые применяется электрический дроссельный модуль, с помощью которого регулируется подача воздуха во впускной трубопровод двигателя. Он заменил целый набор деталей и узлов, применяемых ранее на двигателе:

Система управления Микас 11ET

 

Исключение жёсткой механической связи между педалью акселератора и дроссельной заслонкой позволило обеспечить заданный состав смеси в цилиндрах двигателя, благодаря синхронизации управления подачей топлива форсунками и дозированием воздуха особенно при манипуляциях педалью акселератора. Сама педаль акселератора теперь представляет собою электронномеханический модуль с датчиками положения, информация от которых поступает в блок управления.

Система управления Микас 11ET

Регулирование осуществляется во всём диапазоне работы двигателя, что в сочетании с управлением топливоподачей и зажиганием, позволяет реализовать концепцию управления крутящим моментом двигателя. Она позволяет обеспечить точность и гибкость управления двигателем при минимизации вычислительных процедур и калибровочных параметров в программе блока управления.

Модуль представляет собой дроссельное устройство с электрическим приводом и датчиками положения дроссельной заслонки, интегрированными в одном корпусе, выполненном из композитного материала. Диаметр проходного воздушного канала составляет 60 мм.

 

Система управления Микас 11ET

Рис. 4 Заслонка электронного дроссельного модуля фирмы Siemens

Ось дроссельной заслонки наклонена под углом относительно оси вала дроссельной заслонки. В канавку, расположенную по окружности дроссельной заслонки, помещено гибкое уплотнительное кольцо, что позволяет добиться минимальных, стабильных утечек воздуха при её закрытом состоянии. Это позволяет обеспечить точное регулирование мощности (частоты вращения) на режимах холостого хода и малых нагрузок.

Электрический привод дроссельного модуля состоит из приводного электродвигателя постоянного тока с двухступенчатым редуктором и возвратной пружиной. Датчики положения заслонки магниторезистивные, бесконтактные обеспечивают надёжную регистрацию положения заслонки в течение всего периода эксплуатации устройства. При отключенном управлении модуля заслонка занимает слегка приоткрытое положение, обеспечивающее необходимый расход воздуха для работы двигателя на режиме холостого хода.

Электронный дроссельный модуль в сочетании с педальным модулем позволяет реализовать многопараметровую зависимость величины открытия заслонки от положения педали акселератора, что невозможно обеспечить на дросселе с традиционным приводом тросом.

Датчик массового расхода воздуха.

Для получения оптимального протекания рабочего процесса сгорания и работы каталитического нейтрализатора необходимо обеспечить точное измерение массового расхода воздуха во всем диапазоне режимов работы двигателя при разных условиях на протяжении заданного срока эксплуатации. Эта задача наиболее успешно решается с помощью применения термоанемометрического датчика массового расхода.

Чувствительный элемент датчика содержит специальное компенсационное звено, обеспечивающее повышение точности измерения массового расхода воздуха в условиях изменения направления пульсирующего потока.

Основные преимущества датчика массового расхода воздуха SIMAF:

  • низкое влияние температуры воздуха на погрешность измерения расхода
  • устойчивость чувствительного элемента датчика к механическим примесям, содержащимся в воздухе
  • компенсация пульсаций воздуха.

Планарный лямбда зонд

Для повышения быстродействия и точности регулирования состава смеси в системе управления применяются датчики кислорода с планарным чувствительным элементом.

Планарный четырёхпроводный лямбда-зонд обладает следующими конструктивными преимуществами:

  • быстро нагреваемый чувствительный элемент
  • пленочная конструкция чувствительного элемента
  • уменьшенное время отклика и переключения
  • устойчивость к высокой температуре.

 

Конструктивные преимущества определяют следующие улучшения характеристик:

  • короткое время вступления в работу лямбда-регулятора и уменьшение выбросов вредных
  • веществ в период холодного пуска и прогрева двигателя; низкая стоимость, высокая надежность при использовании стандартного оборудования
  • для производства; работа датчика в широком диапазоне температур; возможность калибровки системы управления для двигателя с высокой температурой отработавших газов.

В системе управления применяются дополнительные датчики: датчик включения сцепления и двухканальный датчик торможения. Необходимость использования концевого выключателя педали сцепления в системе управления объясняется зависимостью динамических параметров управления дроссельным модулем от того, подключен двигатель к трансмиссии или нет. Это актуально при манипуляциях дроссельной заслонкой в случаях переключения передач, когда от системы управления дозированием воздуха требуется реализация максимального быстродействия. Кроме того, наличие датчика позволяет минимизировать частоту вращения холостого хода без опасности внезапной остановки двигателя в начале движения автомобиля. Применение датчиков торможения – требования концепции безопасности управления двигателем в условиях применения электрического дроссельного узла.

В чём заключается концепция безопасности управления двигателем?

Применение в современных системах управления двигателями транспортных средств электрически управляемых устройств, дозирующих воздух, позволяет в сочетании с другими прогрессивными решениями, обеспечить выполнение существующих и перспективных требований законодательства по ограничению выбросов токсичных веществ, при одновременном повышении потребительских качеств автомобиля и его надёжности. Однако, применение таких устройств требует решения целого спектра вопросов, обеспечивающих безопасность управления мощностью двигателя и, в конечном счёте, безопасность автомобиля.

Этот спектр вопросов в настоящее время является частью общей концепции безопасности современных автомобилей, которой придерживаются все известные лидеры в производстве систем управления двигателя, и в ближайшее время она будет принята на законодательном уровне. К ней, в частности, относится обязательное применение специальной конструкции блока управления с дополнительным процессором и использование дублирующих информационных сигналов: сигналы с двух датчиков педали акселератора, сигналы с двух датчиков положения дроссельной заслонки и сигналы с концевых датчиков педали тормоза. Датчик нажатия на педаль тормоза используется для активации функции управления тормозным моментом двигателя (через наполнение цилиндров двигателя воздухом).

Мониторинг безопасности осуществляется как аппаратными, так и программными средствами. Аппаратная реализация мониторинга безопасности в блоке управления включает в себя сопроцессор безопасности (далее СБ), основной микроконтроллер (далее МК), цепи разрешения/запрета работы силовых каскадов управления и цепи перезапуска блока управления. Перезапуск системы может инициироваться как со стороны МК, так и со стороны СБ.

СБ ведет наблюдение за работой системы путем циклического обмена информацией между MК и СБ по каналу SPI (Serial Programming Interface). СБ непрерывно инициирует различные проверки в основном микроконтроллере анализирует их результаты. Кроме того, СБ предоставляет дублирующий канал измерения сигнала датчика педали. Для жесткого взаимоконтроля исправности системы синхронизации (Clock-системы) служит дискретный однобитовый канал связи.

СБ и МК взаимно контролируют друг друга на наличие нештатных отклонений в поведении, анализируя сообщения с результатами периодических тестов. Алгоритм анализа результатов упрощенно можно описать следующей схемой. Если не выявлено отклонений наблюдаемых параметров, выходящих за назначенные пределы, то работа БУ продолжается. Если же информация выходит за назначенные границы, то дальнейшая работа БУ может быть либо продолжена, либо прекращена, в зависимости от величины отклонения и частоты этих отклонений. Завершение работы БУ может быть либо в виде рестарта, либо постоянным. Если работа была завершена постоянно, то вновь запустить блок управления можно, только выключив и вновь подав напряжение питания.

Новые автомобили ГАЗ с системой МИКАС 11ЕТ выпускаются с декабря 2007 г. Каковы особенности их эксплуатации и на что необходимо обратить внимание владельцам?

Все применяемые компоненты системы управления это надёжные узлы, обеспечивающие стабильность технических показателей автомобиля. Однако существует несколько особенностей, которые необходимо знать владельцу. Прежде всего, для качественной работы системы необходима нормальное электрическое питание, в том числе при пуске двигателя.

Например, применение аккумуляторной батареи низкого качества приводит к затяжному пуску двигателя, из-за просадки питания блока управления. Основная ошибка водителя в этом случае – это выключение стартера по истечению 3…5 секунд его работы. Затем следует другая попытка и так до полной разрядки батареи. Однако в этих условиях необходимо при первой попытке вращать двигатель стартером, не нажимая на педаль акселератора до момента пуска, который произойдёт даже в условиях падения напряжения и перезапуска блока управления на 6…10 секунде вращения. При качественной батарее пуск двигателя происходит на 2..4 секунде.

Некоторые владельцы Газелей, особенно перевозящие тяжёлые грузы, жалуются на увеличенный расход топлива: 18…20 л/100 км пробега. Обычно это результат работы двигателя в условиях больших нагрузок, при которых система управления, обеспечивая защиту каталитического нейтрализатора от перегрева, подаёт в цилиндры двигателя сильно богатую смесь. Благодаря этому температура отработавших газов и нейтрализатора снижается и исключается его разрушение. Движение в этих условиях со скоростью не выше 80 км/час исключит срабатывание функции температурной защиты нейтрализатора и сэкономит топливо.

Основным источником информации для водителя об исправности системы управления является лампа индикатора неисправности (ИН). подключена к выводу 31 блока управления и к положительной клемме источника питания, через контакты главного реле системы управления. Включение лампы ИН осуществляется при включении замка зажигания, после чего, если бортовая система диагностики не обнаружила неисправность, лампа должна погаснуть через 3 сек. Система управления реализует три режима работы лампы ИН:

  • выключенное состояние при отсутствии неисправностей,
  • включенное состояние при обнаружении неисправностей,
  • режим периодического включения, выключения лампы ИН (0,5 сек. – включена, 0,5 сек – выключена) в течение 10 сек при регистрации недопустимого уровня пропусков зажигания с последующим отключением подачи топлива в цилиндр двигателя и постоянным свечением лампы ИН.
 
 

Поделиться ссылкой:

Похожие статьи

Руководства